$\qquad$

## Divisibility Worksheet

| Number | Digit <br> Sum | 2 | 3 | 4 | 5 | 6 | 8 | 9 | 10 | Number Divisible by: |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1248 | $\begin{gathered} 1+2+4+8= \\ 15 \end{gathered}$ | $\checkmark$ | $\sqrt{ }$ | $\checkmark$ |  | $\checkmark$ |  |  |  | $2,3,4$ and 6 |
| 15 |  |  |  |  |  |  |  |  |  |  |
| 16 |  |  |  |  |  |  |  |  |  |  |
| 27 |  |  |  |  |  |  |  |  |  |  |
| 28 |  |  |  |  |  |  |  |  |  |  |
| 36 |  |  |  |  |  |  |  |  |  |  |
| 57 |  |  |  |  |  |  |  |  |  |  |
| 70 |  |  |  |  |  |  |  |  |  |  |
| 75 |  |  |  |  |  |  |  |  |  |  |
| 91 |  |  |  |  |  |  |  |  |  |  |
| 93 |  |  |  |  |  |  |  |  |  |  |
| 102 |  |  |  |  |  |  |  |  |  |  |
| 144 |  |  |  |  |  |  |  |  |  |  |
| 150 |  |  |  |  |  |  |  |  |  |  |
| 168 |  |  |  |  |  |  |  |  |  |  |
| 195 |  |  |  |  |  |  |  |  |  |  |
| 225 |  |  |  |  |  |  |  |  |  |  |
| 256 |  |  |  |  |  |  |  |  |  |  |
| 268 |  |  |  |  |  |  |  |  |  |  |
| 316 |  |  |  |  |  |  |  |  |  |  |
| 450 |  |  |  |  |  |  |  |  |  |  |
| 549 |  |  |  |  |  |  |  |  |  |  |
| 1470 |  |  |  |  |  |  |  |  |  |  |
| 4518 |  |  |  |  |  |  |  |  |  |  |
| 7120 |  |  |  |  |  |  |  |  |  |  |

## Divisibility Rules

2 - The last digit will be $0,2,4,6,8$
3 - The sum of the digits is a multiple of $3(3654 \ldots 3+6+5+4=18(18 \div 3=6))$
4 - The last two digits are a multiple of $4(12364 \ldots . .64 \div 4=16)$
5 - The last digit will be 0 or 5
6 - The number is divisible by BOTH 2 \& 3
8 - The last three digits are divisible by 8
10 -The last digit will be 0
12 - The number is divisible by BOTH 3 \& 4
15 - The number is divisible by BOTH $3 \& 5$

Determine if the numbers below are divisible by $2,3,4,5,6,7,8,9,10$. Justify your answer and show your work.

## Example: 148

1. Divisible by 2 since the last digit is even.
2. Not divisible by 3 since the sum $(1+4+8=13)$ of the three digits is NOT divisible by 3 .
3. Divisible by 4 since the last two digits are divisible by 4.
4. Not divisible by 5 since the last digit does NOT end in 0 or 5 .
5. Not divisible by 6 since it is NOT divisible both by 2 and 3 .
6. Not divisible by 7 since $8(1)+4(2)+1(3)=19$ and 6 is NOT divisible by 7 .
7. Not divisible by 8 since last three digits are NOT divisible by 8 .
8. Not divisible by 9 since the sum $(1+4+8=13)$ of the three digits is NOT divisible by 9 .
9. Not divisible by 10 since last digit is NOT zero.
