Name \qquad Special Right Triangles

Remember

1. In a $45^{\circ}-45^{\circ}-90^{\circ}$ right triangle, the hypotenuse is $\sqrt{2}$ times as long as each leg.
2. In a $\mathbf{3 0 ^ { \circ } - 6 0 ^ { \circ } - 9 0 ^ { \circ }}$ right triangle, the hypotenuse is twice as long as the short leg. The long leg is $\sqrt{3}$ times as long as the short leg.

Example: Find the missing lengths.

8

$$
\begin{aligned}
\sqrt{2} x & =8 \\
x & =\frac{8}{\sqrt{2}}
\end{aligned}
$$

$$
=\frac{8}{\sqrt{2}} \cdot \frac{\sqrt{2}}{\sqrt{2}}
$$

$$
=\frac{8 \sqrt{2}}{2}
$$

$$
=4 \sqrt{2}
$$

Use the $30^{\circ}-60^{\circ}-90^{\circ}$ and the $45^{\circ}-45^{\circ}-90^{\circ}$ triangle relationships to solve for the missing sides. Follow your answers in alphabetical order throuigh the maze.
1.

2.

4.

8.

9.

10.

Name \qquad The Pythagorean Theorem

Remember

In a right triangle, the sum of the squares of the legs is equal to the square of the hypotenuse:
$c^{2}=a^{2}+b^{2}$

Example:
Find the length of the missing side.

Solve for the missing side. Use the answer code to find the special name for three integers whose lengths form a right triangle.
A.

E.

TIP! A 3-4-5 triangle has a leg-to-leg-tohypotenuse ratio of 3:4:5. If you can spot multiples of these numbers, you can solve those problems easily.

G.

L.

N.

0.

P.

T.

$$
\overline{20} \quad \overline{26} \quad \overline{13} \quad \overline{8} \quad \overline{3} \quad \overline{\sqrt{13}} \quad \overline{25} \quad \overline{4} \quad \overline{15} \quad \overline{3} \quad \overline{10}
$$

$$
\overline{13} \overline{4} \overline{4 \sqrt{2}} \overline{20} \overline{12} \overline{15} \overline{3 \sqrt{3}}
$$

